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Pathogenicity prediction for protein variants of human genes

I goal: predict pathogenicity

I challenge: lack high-quality labels, infeasible to collect

I approach: use likelihood as a proxy for pathogenicity

I evolutionary principle: less frequently occurring variants are more likely pathogenic

I prior work: train generative models on multiple sequence alignments (MSAs)1

I our work: pretrained language models (LMs) predict pathogenicity comparably with state-of-the-art

I zero shot, no fine-tuning, no MSAs

I opens the possibility of flexibly scoring any variant

1Frazer et al., 2022 Disease variant prediction with deep generative models of evolutionary data
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Training language models via self-supervision on large protein datasets

I typical approach: on natural sequences, train to predict randomly masked residues2

I example dataset: UniRef50, consisting of 45 million protein sequences

2Elnaggar et al., 2021 ProtTrans: towards cracking the language of life’s code through self-supervised deep learning...
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Compute conditional likelihood of mutated sequence

I define a score S(xmt) :=
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I prior work uses this score for protein function3

3Meier et al., 2021; Language models enable zero-shot prediction of the effects of mutations on protein function
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Zero-shot language models have better aggregate performance

I evaluate on high-quality clinical labels (ClinVar labeled variants with at least one star)

I compare language models T5, Bert (Elnaggar et al., 2021) with state-of-the-art EVE (Frazer, 2021)

I VELM with T5 has highest aggregate AUC, despite not using MSAs
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Protein language models predict pathogenicity zero-shot

thank you! — please feel free to reach out to us at poster session or via email
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