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Background

» about me: fourth year Ph.D. candidate in Computer Science at Stanford (computational side)

» about this talk: unsupervised prediction of protein variant pathogenicity

» Disease variant prediction with deep generative models of evolutionary data [Frazer et al. 2021]
» a nature paper from last year
» involved/sophisticated research effort

» computational biology team (5 people at Harvard) and machine learning team (3 people at Oxford)
» most recent contribution in a decade-long research program
» they build probabilistic models for 3,000+ proteins, each protein takes 80 hr. CPU time



Pathogenicity via probability
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» goal: quantify pathogenicity of protein variants in disease-related genes

» problem: infeasible to label all variants (even with high-throughput experiments); see paper

» 6.5 million missense variants in the gnomAD dataset of 141,000 human genomes

» 36 million missense variants associated with 3,219 disease-related genes in ClinVar

» approach: (roughly speaking) protein variants which appear in nature have been selected for fitness

» given a dataset of naturally occurring variants, one could build an unsupervised probabilistic model



Proteins as strings

Nucleotides Codons Amino Acids Proteins
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(4 of them) (64 of them) (20 of them) (lots of them)

» recall that a protein is a molecule which we can represent as an amino acid string

» nucleotides are read into aminos in groups of three called codons

» call the amino string corresponding to nucleotide string the sense of the nucleotide string
» different nucleotide strings can have same or different sense (depends on codons)
» paper's focus: when a sense is different by one amino in one spot, called a missense variant

» in other words, the paper restricts interest to mutations that swap a single amino acid

» they look at missense variants of protein-coding genes which are associated with disease



Distribution on amino strings

» paper asserts that uncommon variants are pathogenic

» so the goal is to build a protein-specific distribution over naturally occurring amino strings

» given a length-k wild-type (or canonical) protein zyt € X = {A, R, ---, V}* for a gene
» want the distribution p : X — [0, 1] of naturally occurring variants of this protein

» use p to score variants: p(z) > p(y) means variant z is more common than y
» if we had p, we could define the evolutionary index E, of variant z, by
z
B, = —log 229

p(zwt)

» if a variant has relatively low probability, then it is a candidate for being pathogenic

» obtaining this index is the point of the paper; hence evolutionary model of variant effect (EVE)



Latent structure in genetic data

s p-lactamase
3 @ Acidobacteria ﬁ‘:::‘r’;i:c”s 3 )
o ‘ Actinobacteria ® Firmicutes * ‘
2 ® Bacteroidetes  © Fusobacteria
Chloroflexi ® Proteobacteria

® Cyanobacteria  © Other

" z
mutational landscape

» amino acid space still too big, at least 201°° variants...can’t write down p
» perhaps (nonlinear) latent structure, can use it to approximate p

P conservation across certain subindices of protein
» figure from Riesselman 2018 (prior work by some of the EVE authors)

» trained a VAE latent variable model (will discuss later) with 2-dimensional latent space



Latent variable models

O—@

» observe z € X, postulate p.(z) = fz Pzz(-, ) and pzz = P2Pq|2
» z € Z are hidden and not observed

» roughly speaking, most of the structure in £ comes from structure in z

» ubiquitous example: any signal 4+ noise model

» other examples include gaussian mixture models, hidden markov models (HMMs) etc.
» e.g., jackhmmr multiple sequence alignment (MSA) tool used in paper is based on an HMM
» variational autoencoders (VAEs) are one such latent variable model, which we will discuss later

» their conditional distribution p;|, is parameterized using a neural network



Block diagram of method used in paper
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» first, they find pathogenic genes and construct a MSA dataset for each one

» second, they fit a probabilistic latent variable for each protein and score variants



Method used in paper
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» dataset construction

1. associate a gene with a canonical wild-type protein; using ClinVar, UniProt
2. associate and align many similar proteins found in nature with that canonical one

» specifically, get a multiple sequence alignment (MSA) using jackhmmr against UniRef100
» probabilistic model and scoring

3. fit a VAE to a dataset (a subset of subsequences)

4. likelihood score all proteins which are one-amino substitutions of the canonical protein
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Probabilistic model piece

MSA Datasets —)

One alignment

Fit a probabilistic model
for protein family

dataset per protein

p(zv)

— B, = —log
p(zwe)

Scores for missense variants
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Variational autoencoder (VAE)

(=) sample O (2) sample
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» a variational autoencoder from latents Z to observations X is a pair (pz ,pm‘z) q(¢)

2l where

(pge),p( |)) is a deep latent-variable model with parameters 8, called generative model
» p( ). Z = Ris a distribution with parameters from 6, called latent prior distribution
» p(g) X X Z — R is a deep conditional with params from 8, called decoder distribution

» has associated decoder neural network f©) with domain Z
(#)

P Z x X — R is deep conditional with params ¢, called encoder distribution

> q

» has associated encoder neural network g(#) with domain X
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Evidence lower bound for log likelihood

b log likelihood of i.i.d. observed dataset z*,...,z™ in X under VAE model is Yoy logpgf)(:zi)

» where the model ev:dencep f pm (¢, z) is assumed (usually is) intractable

» but since fz (¢) ,z') =1 and p(e)(zi) = pgi)( ¢,z )/p(e)( z*) for all ¢ € Z, can express

z|m z|m
) i (4’)(( )
Pzz ((, T )
g 0(a") = [ a(c,2)1og @,)( )c + [ afce) o8 2o ol
z z\z z\z((l )
ELBO(6.¢,2%) da (g} (=).p{] (-24)) >0

z|z z|x

> ELBO(6, ¢,z°)

» dy; is the Kullback-Leibler divergence between two distributions (densities)
» it is a nonnegative similarity measure (but not a metric); dgi(g,p) = 0 when g =p

. . . 6
» ¢ are sometimes called variational parameters, since one wants qi‘rz ~ pi‘i

» can maximize the evidence lower bound (ELBO) as a proxy for the likelihood
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ELBO as reconstruction loss and regularization

» recall from the previous slide that logp(e)( Y) > ELBO(, ¢, =)

» again, since pzw)((, Y= pi")(() ® (:B ¢) for all ¢ € Z, express

ELBO(6, ¢,z") = / ¢'%(¢,z") log ') (2*, )dC +dia (¢ (-, 2*), p)

r(6,¢,2*
£(6,¢,2*) 329

1 [
» can interpret £ a reconstruction loss and r as a regularization

» £ is an integral (expectation) and may be estimated via monte carlo

» 7 is often analytical since it is a divergence of two distributions

» if these are differentiable in parameters, can apply usual stochastic gradient methods (next slide)



Gradient of ELBO

» recall ELBO(8, ¢, z*) = £(6, ¢, z*) + (6, ¢, =)
» for first-order (gradient) methods, one wants Vg, 4)ELBO

> loss £(8, ¢, %) is an integral (expectation) of logpzlz, use monte carlo to approximate

/Z ¢ 2(¢, %) log pl) (2, ()d¢ ~ Zlogpiﬁi(wicf”)

(4’)(
)

with m samples {,EJ) ~ Qs z*) from the encoder model

» empirical fact m = 1 works; so approximate £(8, ¢, z*) ~ logpmlz(:c ‘. ¢i) where {; ~ q ( z?)
» difficulty: the sampling distribution depends on ¢; fix: reparameterize (; (called reparameterization trick)

(¢)

» e.g., suppose (; is gaussian with mean p;”’ and covariance EE¢) (¢: params depends on ¢)

> ,LL(¢) + (EE¢))1/251' for £, mean-zero identity-covariance gaussian (&; params don’t depend on ¢)

> the regularization (6, ¢, z*), a divergence, is assumed (often) analytically computable

» e.g., for gaussian latent and gaussian encoder, exists closed form for divergence between two gaussians
15



Finding parameters for VAE

» in summary, we have bounded below the log likelihood of the dataset

> logpl(z*) > ) ELBO(Y,6,2%) = » _ £(6,4,3") + (6, 6, ")
=1 =1 =1
» use minibatch stochastic gradient ascent to maximize right hand side

» i.e., sample k points from dataset, compute gradients using techniques on previous slide
» algorithm is called auto-encoding variational bayes [Kingma & Welling 2014]

» the gradient estimator is called stochastic gradient variational bayes estimator [Rezende et al. 2014]
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Details of paper’s VAE
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» details of neural network architecture in paper, lots of exploration to land on this model

» slight wrinkle: paper uses a Bayesian VAE (i.e. learns a distribution on decoder weights )
» same ELBO machinery we discussed works, gives one additional term in loss
» paper claims that using a Bayesian neural network further improved results
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Dataset construction piece

ClinVar
UniProt
UniRef100

Several public
datasets

—>

Find pathogenic genes
and run MSA algorithm

%

MSA Datasets —»

One alignment
dataset per protein
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Multiple sequence alignment datasets

TSMP
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» goal: turn public sources into a dataset of aligned protein families

jackhmmr

UniRef100

mutliple sequence alignment datasets

» ClinVar: variant labels; UniProt: canonical protein transcript; UniRef100: naturally occurring proteins
» use ClinVar database to identify genes associated with disease; for each such gene:

1. use UniProt database to find the canonical protein associated with the gene
2. use jackhmmer against UniRef100 to find and align homologous proteins to that protein

» heuristic 1: pick subset of those sequences that “well-match” the canonical one
» heuristic 2: pick subset of focus indices “well-conserved” across this subset of sequences

» methodology originally proposed in Hopf et al. 2017 (same lab at Harvard)
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Results: example plot for SCN1B
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» heat map of EVE pathogenicity scores in SCN1B, hotter (red) is more pathogenic

» paper’s bottom line: get one of these for each gene (canonical protein) of interest

» suggest using these scores to filter pathogenic candidates for further investigation
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Comparison to other methods

Concordance with DMS (Spearman p)
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Next steps

» what is the meaning of the learned latent variables?
» how sensitive is the model to the dataset generation choices?
» does one need to use VAEs? there are other generative models, are there simpler choices?

» beyond missense variants?
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Conclusion

» latent variable models are viable for genomic data
» sophisticated approaches obtain state of the art results

» several directions for future work on simplifications, extensions, interpretations
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