Probabilistic Modeling using Tree Linear Cascades

Nick Landolfi & Sanjay Lall
Stanford University
Motivation

- want to model *functional or causal relationships among high-dimensional multivariate data*
 - control systems, genomics, cloud telemetry, fMRI brain imaging, ...
- for the purposes of tasks like *classification* or for *interpretation* of phenomena
 - want *parsimonious representations* of, i.e. $O(d)$, of high-dimensional continuous distributions
 - want *computationally attractive* techniques for finding these representations
- this paper
 - formulates and solves the *simultaneous cascade regression* fitting problem
 - finds a linear and tree-structured structural equation model (SEM)
 - analyzes *tree linear cascades* connecting them to the regression
 - these are a particular SEM with *neither Gaussian nor independent assumptions* on errors
 - connects both to the classical Chow-Liu result for Gaussian densities
Simultaneous cascade regression

- **want to** *simultaneously search for graph and functional relations* of structural equation model

- **Problem 1.** Find rooted tree \((T, r)\) on \(\{1, 2, \ldots, d\}\) and \(A \in \mathbb{R}^{d \times d}\) to

 \[
 \begin{aligned}
 & \text{minimize} & & \mathbf{E} \|Ax - x\| \\
 & \text{subject to} & & A \in \text{sparse}(T, r).
 \end{aligned}
 \]

 - where \(\text{sparse}(T, r) = \{A \in \mathbb{R}^{d \times d} \mid A_{ij} = 0 \text{ if } j \neq \text{pa}_i\}\),
 - has elements with same *sparsity pattern as the directed adjacency matrix* of \((T, r)\)
 - makes *no distributional assumptions* on \(x\)

- **Solution.** Find maximum spanning tree of complete graph with edges weighted by *squared correlations*

 - and for selected edge \(\{i, j\}\) with \(j = \text{pa}_i\), choose \(A_{ij} = \mathbf{E}(x_i x_j)\)
 - see Lemma 1 and Theorem 2 of paper
Tree linear cascades

- Let \((T, r)\) be a rooted tree on \{1, 2, \ldots, d\}; given

 1. an uncorrelated random vector \(e : \Omega \to \mathbb{R}^d\) with \(\mathbb{E}(e) = 0\) and \(\text{cov}(e) > 0\) and
 2. a matrix \(A \in \text{sparse}(T, r) = \{A \in \mathbb{R}^{d \times d} | A_{ij} = 0 \text{ if } j \neq \text{pa}_i\}\)

- \(x\) is a **tree linear cascade** on \(e\) with respect to \(A\) if

 \[x = Ax + e\]

- **Result:** \(T\) is the *unique* maximum spanning tree of graph with edges weighted by *squared correlations*

 - i.e., \(T\) is identifiable from distribution of \(x\); the root is *not*; see Section III.B of paper
 - consequently, *cascade regression identifies the tree* of a tree linear cascade
 - see Theorem 1 and Corollary 1 of paper
Generalization of Gaussian Chow-Liu

Problem 2. Given a density \(g : \mathbb{R}^d \to \mathbb{R} \), find a tree \(T \) on \(\{1, \ldots, d\} \) and a density \(f : \mathbb{R}^d \to \mathbb{R} \) to minimize \(d_{kl}(g, f) \)

subject to \(f \) factors according to \(T \)

- density case of classical Chow-Liu problem; \(d_{kl} \) is the Kullback-Leibler divergence
- well-known solution: maximum spanning tree of complete graph with edges weighted by mutual informations

Connection. Gaussian Chow-Liu and cascade regression *trees coincide*; see Corollary 2

- however, *cascade regression makes no Gaussian assumption*
 - not all tree linear cascades are tree Gaussians...
 - but converse is true, use sparse Cholesky factorization; see Section III.A of paper

- consequently, cascade regression provides *alternate justification/interpretation of Chow-Liu tree*
 - conversely, suggests interpreting *cascade regression as density approximation*
Empirical cascade regression: a simple stock example

- in practice, we have data $x^1, \ldots, x^n \in \mathbb{R}^d$ and we want to find (T, r) and A

$$\text{minimize } \sum_{k=1}^{n} \|Ax^k - x^k\| \quad \text{subject to } A \in \text{sparse}(T, r)$$

- ten years of daily stock price data from the wall street journal for the Dow Jones 30, here’s the tree

- nodes are stocks colored by industry; roughly speaking stocks in similar industries are connected

- dataset and straightforward code available online
Conclusion

- the paper provides *several theoretical results*
 - posing and solving cascade regression
 - analyzing tree linear cascades
 - giving a non-Gaussian interpretation of Chow-Liu

- these results lead to *computationally attractive* practical techniques

- next steps may include other applications, or other problem variants
 - e.g., block case; extending prior work on stochastic process case (see [Materassi & Innocenti 2010])

- more details and full proofs available in paper and at poster session, *thanks!*