Probabilistic Modeling Using Tree Linear Cascades

Nick Landolfi & Sanjay Lall Stanford University

Motivation: modeling functional relations for high-dimensional observations

- > example application: anomaly localization in cloud telemetry, a network of dynamical systems
- ▶ an approach: structural equations, model x_i as a function $x_i = f_i(x_{-i})$ of other metrics x_{-i}

• e.g.,
$$x_2 = f_2(x_1)$$
; $x_3 = f_3(x_2)$; $x_4 = f_4(x_2)$; $x_5 = f_5(x_4)$; $x_6 = f_6(x_4)$

Cascade regression to simultaneously find tree and parameters

Problem 1. Given random vector $x : \Omega \to \mathsf{R}^d$, find rooted tree (T, r) and $A \in \mathsf{R}^{d \times d}$ to

```
minimize \mathbf{E} ||Ax - x||
subject to A \in \operatorname{sparse}(T, r)
```

• where sparse(T, r) has elements with sparsity pattern of directed adjacency matrix of (T, r); e.g.,

Solution. find maximum spanning tree with edges weighted by $E(x_i x_j)^2$ (Theorem 1)

▶ and for selected edge $\{i, j\}$ with $j = pa_i$, choose $A_{ij}^{\star} = \mathsf{E}(x_i x_j)$

Tree linear cascades have identifiable structure

▶ $x : \Omega \to \mathbf{R}^d$ is a *tree linear cascade* on $e : \Omega \to \mathbf{R}^d$ with respect to $A \in \operatorname{sparse}(T, r)$ if

x = Ax + e

where e is uncorrelated, $\mathbf{E}(e) = 0$ and $\operatorname{sparse}(T, r)$ has sparsity like adjacency matrix of (T, r)

Result. T is the unique maximum spanning tree with edges weighted by $E(x_i x_j)^2$ (Theorem 2)

- cascade regression identifies the tree of such a distribution (Corollary 1)
- ▶ analogous to stochastic process variant studied in controls literature [Materassi and Innocenti, 2010]

Our formulation generalizes Gaussian Chow-Liu

Problem 2. Given a density $g : \mathbf{R}^d \to \mathbf{R}$, find a tree T and a density $f : \mathbf{R}^d \to \mathbf{R}$ to

minimize $d_{kl}(g, f)$ subject to f factors according to T

- where d_{kl} is the Kullback-Leibler divergence
- \blacktriangleright f factors according to T means $f = f_i \prod_{j
 eq i} f_{j \mid \mathsf{pa}_j}$

well-known prior solution: maximum spanning tree with edges weighted by mutual informations

- ▶ if g is gaussian, then mutual information is $-1/2 \log(1 \mathbf{E}(x_i x_j)^2)$
- monotonic transformation of $E(x_i x_j)^2$; so trees coincide (Corollary 2)
- cascade regression did not require Gaussian assumption

Empirical cascade regression on real stock data

▶ in practice, we have data $x^{(1)}, \ldots, x^{(n)} \in \mathsf{R}^d$ and we want to find (T, r) and $A \in \mathsf{R}^{d \times d}$

ninimize
$$\sum_{k=1}^n \|Ax^{(k)} - x^{(k)}\|$$
 subject to $A \in ext{sparse}(T,r)$

▶ ten years of daily stock price data from the Wall Street Journal for the Dow Jones 30, here's the tree

> nodes are stocks colored by industry; roughly speaking stocks in similar industries are connected

Conclusion: theoretical results build understanding, yield practical technique

- in summary, our contributions are
 - 1. posing and solving cascade regression
 - 2. analyzing tree linear cascades
 - 3. giving a non-Gaussian interpretation of Chow-Liu
- next steps include applications, other problem variants
 - e.g., non-linear featurized case, block case
- more details and full proofs available in paper and at poster session, thanks!