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Motivation: modeling functional relations for high-dimensional observations

I example application: anomaly localization in cloud telemetry, a network of dynamical systems

I an approach: structural equations, model xi as a function xi = fi(x�i) of other metrics x�i
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I e.g., x2 = f2(x1); x3 = f3(x2); x4 = f4(x2); x5 = f5(x4); x6 = f6(x4)
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Cascade regression to simultaneously find tree and parameters

I Problem 1. Given random vector x : 
! Rd, find rooted tree (T; r) and A 2 Rd�d to

minimize E kAx� xk

subject to A 2 sparse(T; r)

I where sparse(T; r) has elements with sparsity pattern of directed adjacency matrix of (T; r); e.g.,

I Solution. find maximum spanning tree with edges weighted by E(xixj)2 (Theorem 1)

I and for selected edge fi; jg with j = pai, choose A?
ij

= E(xixj)
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Tree linear cascades have identifiable structure

I x : 
! Rd is a tree linear cascade on e : 
! Rd with respect to A 2 sparse(T; r) if

x = Ax+ e

where e is uncorrelated, E(e) = 0 and sparse(T; r) has sparsity like adjacency matrix of (T; r)

I Result. T is the unique maximum spanning tree with edges weighted by E(xixj)2 (Theorem 2)

I cascade regression identifies the tree of such a distribution (Corollary 1)

I analogous to stochastic process variant studied in controls literature [Materassi and Innocenti, 2010]
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Our formulation generalizes Gaussian Chow-Liu

I Problem 2. Given a density g : Rd ! R, find a tree T and a density f : Rd ! R to

minimize dkl(g; f)

subject to f factors according to T

I where dkl is the Kullback-Leibler divergence

I f factors according to T means f = fi
Q

j 6=i
fjjpaj

I well-known prior solution: maximum spanning tree with edges weighted by mutual informations

I if g is gaussian, then mutual information is �1=2 log(1� E(xixj)2)

I monotonic transformation of E(xixj)2; so trees coincide (Corollary 2)

I cascade regression did not require Gaussian assumption
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Empirical cascade regression on real stock data

I in practice, we have data x(1); : : : ; x(n) 2 Rd and we want to find (T; r) and A 2 Rd�d

minimize
Pn

k=1
kAx(k) � x(k)k subject to A 2 sparse(T; r)

I ten years of daily stock price data from the Wall Street Journal for the Dow Jones 30, here’s the tree
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I nodes are stocks colored by industry; roughly speaking stocks in similar industries are connected
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Conclusion: theoretical results build understanding, yield practical technique

I in summary, our contributions are

1. posing and solving cascade regression

2. analyzing tree linear cascades

3. giving a non-Gaussian interpretation of Chow-Liu

I next steps include applications, other problem variants

I e.g., non-linear featurized case, block case

I more details and full proofs available in paper and at poster session, thanks!
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