Tree Distributions

Nick Landolfi and Sanjay Lall
Stanford University
Outline

Overview

Notation

Trees and Distributions

Approximation Problem & Solution

Example: Binary MNIST
Overview
Motivation: classification

- we have a data set of records \(u^1, \ldots, u^n \in U \) and \(v^1, \ldots, v^n \in V \) with \(V \) a finite set of classes
- we want to build a classifier \(G: U \rightarrow V \) and use it to classify a new independent variable \(u \) as \(G(u) \)
- for example, \(U = \mathbb{R}^2 \) and \(V = \{0, 1\} \)

![Graphical illustration](image_url)

- the point \(u^k \) is colored red if \(v^k = 0 \) and blue if \(v^k = 1 \)
- the region \(\{ u \in \mathbb{R}^2 \mid G(u) = 0 \} \) is shaded red and \(\{ u \in \mathbb{R}^2 \mid G(u) = 1 \} \) is shaded blue
Our setting

- we consider independent variables in a *large discrete set*
 - \(\mathcal{U} = \mathcal{S}^d \) where \(\mathcal{S} \) is a finite set; \(d > 100 \), so \(\mathcal{S}^d \) is large
 - in particular, \(\mathcal{U} \) is not \(\mathbb{R}^2 \) as on the previous slide
- for example, \(\mathcal{U} = \{0, 1\}^{784} \) and \(\mathcal{V} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
 - \(u \) represents a hand-written digit (\(784 = 28 \times 28 \) pixels); \(v \) is the Arabic digit depicted by \(u \)

(a) \(v^1 = 5 \)
(b) \(v^2 = 0 \)
(c) \(v^3 = 4 \)
(d) \(v^4 = 1 \)
(e) \(v^5 = 9 \)

- one approach is to produce a distribution over \(\mathcal{U} \) for each class; called *generative* modeling
 - for a new \(u \), we define \(G(u) \) to be a class with *maximum likelihood*
Overview

- so we want to *estimate and store a distribution* over a large discrete space S^d
 - for example, $S = \{0, 1\}$ and $d = 784$ with S^d representing 28×28 binary images
- but estimating and storing a distribution over so many outcomes is *infeasible*
 - for a distribution on $\{0, 1\}^{784}$ we need $2^{784} - 1$ parameters to represent the distribution
- so we do not look at all distributions, because that space is too large, we *consider a subset*
 - roughly, only consider distributions which are a product of so-called *second-order* distributions
- we will see an *efficient algorithm* for estimating such distributions
 - original work by Chow and Liu in 1968
Notation
Notation: probability

- $p : \mathcal{U} \to \mathbb{R}$ is a distribution on $\mathcal{U} = S^d$ with S finite; as usual $p \geq 0$ and $\sum_{u \in \mathcal{U}} p(u) = 1$

- p_i is a distribution on S, called the ith marginal distribution, for $i = 1, \ldots, d$
 - defined by $p_i(a) = \sum_{u_i = a} p(u)$

- p_{ij} is a conditional distribution, called the i, jth conditional distribution, for $i, j = 1, \ldots, d$ and $i \neq j$
 - first, we define the second-order i, jth marginal distribution p_{ij} on S^2
 $$p_{ij}(a, b) = \sum_{u_i = a, u_j = b} p(u)$$
 - then we define p_{ij} by $p_{il}j(a, b)p_j(b) = p_{ij}(a, b)$ for all $a, b \in S$
 - often we will drop the arguments and write $p_{ij} = p_{ij}p_j$
 - we will use similar notation for conditioning on multiple variables: for example, $p_{i|jk|l}$

- roughly speaking, we will approximate a distribution p using terms like p_i and p_{ij}
Notation: Kullback-Leibler divergence

- we want a criterion to judge how well a distribution \(p \) approximates a given distribution \(q \)
- we will use the Kullback-Leibler divergence, defined by

\[
d_{kl}(q, p) = H(q, p) - H(q)
\]

- where \(H(q) = -\sum_a q(a) \log q(a) \) is called the entropy of \(q \)
- and \(H(q, p) = -\sum_a q(a) \log p(a) \) is called the cross entropy of \(p \) relative to \(q \)
- we interpret \(d_{kl} \) as a measure of the difference between two distributions
 - \(d_{kl}(q, p) \geq 0 \) for all distributions \(q \) and \(p \) and \(d_{kl}(q, q) = 0 \)
 - if we want to find a distribution \(p \) to minimize \(d_{kl}(q, p) \)
 then \(p = q \) is a solution; later we will constrain \(p \)
 - \(d_{kl} \) is not symmetric and so not a metric, though we do not mind
Notation: empirical distribution

- the distribution we will approximate is the natural one associated with data
- we are given \(n \) records \(u^1, \ldots, u^n \) with \(u^k \in \mathcal{U} \) a finite set
- the \textit{empirical distribution} of \(u^1, \ldots, u^n \) is the distribution \(q \) on \(\mathcal{U} \) defined by
 \[q(u) = \frac{1}{n} \left| \{ u^k \mid u^k = u \} \right| \]
 - \(q(u) \) is the proportion of records which are \(u \)
- the empirical distribution is a useful summary of data, but unwieldy, so we approximate it
Notation: mutual information graph

- A solution to our approximation will be characterized by mutual informations of the empirical distribution.
- The **mutual information** of p_{ij} is $d_{kl}(p_{ij}, p_ip_j)$.
 - We denote the symmetric **matrix of mutual informations** of p by $I(p)$, and define it by
 \[I(p)_{ij} = d_{kl}(p_{ij}, p_ip_j) \]
- The **mutual information graph** of p is a weighted complete undirected graph on $\{1, \ldots, d\}$.
 - Edge $\{i, j\}$ is weighted by $I(p)_{ij}$.
- Roughly speaking, good approximations will model interactions between vertices with heavy edges.
Trees and Distributions
Rooted trees

- we use trees to discuss factoring a discrete probability distribution
 - we will use such distributions to approximate, since they require fewer parameters
- a tree T is an undirected acyclic connected (finite) graph
 - there is a unique path between any two vertices
- we root a tree by selecting a vertex and orienting all edges away from it
 - and so obtain a directed tree
 - we call the distinguished vertex the root
 - each vertex (except the root) has only one parent
Rooted trees: example

- consider tree \(T = (\{1, 2, 3, 4, 5, 6\}, \{\{1, 2\}, \{2, 3\}, \{2, 4\}, \{4, 5\}, \{4, 6\}\}) \)

![Diagram of a tree with three different root options](image)

(a) not rooted
(b) rooted at 1
(c) rooted at 5

Figure 2: A tree and two possible roots

- in a rooted tree, each vertex except the root has one parent
 - we write \(pa_j = i \) to mean that the parent of vertex \(j \) is vertex \(i \)
 - in panel (b), \(pa_2 = 1, pa_3 = 2, pa_4 = 2, pa_5 = 4, \) and \(pa_6 = 4 \)
Tree-structured probability: example

- consider the same tree $T = (\{1, 2, 3, 4, 5, 6\}, \{\{1, 2\}, \{2, 3\}, \{2, 4\}, \{4, 5\}, \{4, 6\}\})$, rooted at vertex 1

- if p is a distribution on S^6, then by chain rule p always satisfies

$$p = p_{6|1,2,3,4,5}p_{5|1,2,3,4}p_{4|1,2,3}p_{3|1,2}p_{2|1}p_{1}$$

- we say p factors according to the tree T rooted at vertex 1 if p satisfies

$$p = p_{6|4}p_{5|4}p_{4|2}p_{3|2}p_{2|1}p_{1}$$

- so $p_{6|1,2,3,4,5} = p_{6|4}$ (the conditional distribution does not depend on u_1, u_2, u_3 or u_5)

- and similarly for $p_{5|4}$, $p_{4|2}$ and $p_{3|2}$
Definition: Let T be a tree on $\{1, \ldots, d\}$. A distribution p on S^d factors according to T rooted at vertex i if

$$p = p_i \prod_{j \neq i} p_{j|\text{pa}_j}$$

- reminder that this statement is for all $u \in U$ but drops arguments
- we call p_i and $p_{j|\text{pa}_j}$ for $j \neq i$ the *factors* of p
- the distribution p is a product of d factors

- this definition says how a distribution factors according to a *rooted* tree
Tree-structured probability: defining theorem

- **Theorem**: Let T be a tree on $\{1, \ldots, d\}$ and let p be a distribution on S^d. If p factors according to T rooted at some vertex, then p factors according to T rooted at any vertex in $\{1, \ldots, d\}$.
 - in other words: if p factors according to one choice of root, it factors according to all choices.

- **Definition**: A distribution p on S^d **factors** according to a tree T on $\{1, \ldots, d\}$ if it factors according to T rooted at any vertex.
we can successively exchange a root with one of its children to root the tree at the child

Figure 3: Moving from rooted at 1 to rooted at 5

the root vertex is red

in (b), (c) and (d), the only edge differing from (a), (b) and (c), respectively, is red
Tree-structured probability: proof of defining theorem

- roughly, the theorem says
 - p factors according to one possible root if and only if it factors according to every possible root
- proof of the theorem is repeated application of following lemma
- **Lemma**: Let T be a tree on $\{1, \ldots, d\}$. Let distribution p on S^d factor according to T rooted at vertex i. If $j \in \{1, \ldots, d\}$ with $\text{pa}_j = i$, then p factors according to T rooted at vertex j.
 - the assumption on p means $p = p_i \prod_{k \neq i} p_k|\text{pa}_k = p_i p_j|i \prod_{k \neq i, j} p_k|\text{pa}_k$
 - since p is a distribution, $p_j|i p_i = p_{ij} = p_j|i p_j$
 - so we conclude $p = p_j|j p_j|i \prod_{k \neq i, j} p_k|\text{pa}_k$
 - which means p factors according to T rooted at j
Tree-structured probability: existence and uniqueness

- a distribution p need not factor according to a tree
 - for example, consider a distribution p on $\{0, 1\}^3$ with $p(1, 1, 1) = 4/11$ and $p(u_1, u_2, u_3) = 1/11$ otherwise
 - there does not exist a tree according to which p factors, requires checking cases (symmetry reduces number)
 - compare with: p always factors according to chain rule

- a distribution p may factor according to multiple trees
 - for example, consider a distribution p on $\{0, 1\}^3$ with $p = p_1p_2p_3$
 - then p factors according to every tree on $\{1, 2, 3\}$

- we conclude that there is not a one-to-one correspondence between trees and distributions

- rather, trees specify subsets of distributions
Tree-structured probability: why

- these distributions *can be stored* feasibly in computer memory
 - linear in d rather than exponential in d; $2d$ vs. 2^d for the case $S = \{0, 1\}$
- we will see, they *can be estimated* efficiently
 - algorithm polynomial in dimension d and size of data set n
- broadly speaking, they are useful *baseline* probabilistic models
- roughly speaking, they are specified by few parameters, which reduces overfitting
- and, also roughly speaking, they may still *capture important dependencies*
Approximation Problem & Solution
Relative entropy approximation

- we have a distribution q on S^d
- we want to find a distribution p on S^d and tree T on $\{1, \ldots, d\}$ to

 minimize $d_{KL}(q, p)$
 subject to p factors according to T

 - called the \textit{Chow-Liu problem} to approximate q
- we refer to a solution pair as a \textit{Chow-Liu distribution} and a \textit{Chow-Liu tree} of q
 - a Chow-Liu tree always exists, but need not be unique
- we will solve by finding best parameters for a fixed tree, then finding best tree
Relative entropy approximation: maximum likelihood interpretation

- we have data set \(u^1, \ldots, u^n \) with empirical distribution \(q \)

- the Chow-Liu problem to approximate \(q \) is equivalent to minimizing average negative log likelihood, since

\[
d_{k\ell}(q, p) = H(q, p) - H(q) \\
= -\sum_{u \in \mathcal{U}} (q(u) \log p(u)) - H(q) \\
= -\frac{1}{n} \sum_{k=1}^{n} \log p(u^k) - H(q)
\]

and \(H(q) \) does not depend on \(p \) or \(T \)

- in this case, we refer to a Chow-Liu tree \(T \) as a maximum likelihood tree
first, we will see how to select the probability parameters for a given tree

later we will see how to select the tree

Theorem 1: Let q be a distribution on S^d. Let T be a tree on $\{1, \ldots, d\}$. Let $\text{pa}(\cdot)$ be defined by T rooted at vertex i. Then the distribution p on S^d defined by

$$p = q_i \prod_{j \neq i} q_j |_{\text{pa}_j}$$

achieves minimum Kullback-Leibler divergence to q among all distributions which factor according to T.
Approximation: proof of Theorem 1

- $i = 1, \ldots, d$ is an arbitrary vertex and p factors according to T rooted at i

- we express the cross entropy of p relative to q

\[
H(q, p) = - \sum_{u \in U} q(u) \log p(u)
\]

\[
= - \sum_{u \in U} q(u) \left(\log p_i(u_i) + \sum_{j \neq i} \log p_{j|pa_j}(u_j, u_{pa_j}) \right)
\]

\[
= H(q_i, p_i) + \sum_{j \neq i} \sum_{b \in S} q_{pa_j}(b) H(q_{j|pa_j}(\cdot, b), p_{j|pa_j}(\cdot, b))
\]

- this problem separates across dimension d

 - one problem to find p_i; solution is $p_i = q_i$

 - $d - 1$ problems to find $p_{j|pa_j}$ for $j \neq i$; solutions are $p_{j|pa_j} = q_{j|pa_j}$
Approximation: second theorem

- this theorem will tell us how to select the tree structure
 - recall that the mutual information graph is undirected on \{1, \ldots, d\} and edge \{i, j\} has weight \(I(q)_{ij}\)

Theorem 2: Let \(q\) be a distribution on \(S^d\). A tree \(T\) on \{1, \ldots, d\} is a Chow-Liu tree of \(q\) if and only if \(T\) is a maximum spanning tree of the mutual information graph of \(q\).
first theorem tells us the optimal choice of p that factors according to a tree T, we write it p^*_T

recall that $d_{kl}(q, p) = H(q, p) - H(q)$

- $H(q)$ does not depend on p, so we focus on the cross entropy term

we will see that we can express the cross entropy

$$H(q, p^*_T) = \sum_{i=1}^{d} H(q_i) - \sum_{\{i,j\} \in T} I(q)_{ij}$$

- notation $\{i, j\} \in T$ means $\{i, j\}$ is an edge of T
- for each $i = 1, \ldots, d$, $H(q_i)$ does not depend on T

the minimize in the Chow-Liu problem results in a maximization over the second sum
we express the cross entropy of p_T^* relative to q as

$$H(q, p_T^*) = H(q_1) - \sum_{j \neq 1} \sum_{u \in \mathcal{U}} q(u) \log q_{j|\text{pa}_j}(u_j, u_{\text{pa}_j})$$

$$= H(q_1) - \sum_{j \neq 1} \sum_{u \in \mathcal{U}} q(u) \left(\log q_{j,\text{pa}_j}(u_j, u_{\text{pa}_j}) - \log q_{\text{pa}_j}(u_{\text{pa}_j}) \right)$$

$$= H(q_1) - \sum_{j \neq 1} \sum_{u \in \mathcal{U}} q(u) \left(\log q_{j,\text{pa}_j}(u_j, u_{\text{pa}_j}) - \log q_{\text{pa}_j}(u_{\text{pa}_j}) - \log q_j(u_j) + \log q_j(u_j) \right)$$

$$= \sum_{i=1}^d H(q_i) - \sum_{j \neq 1} I(q)_{j,\text{pa}_j}$$

this completes the proof, so we want a maximum spanning tree of the mutual information graph
Approximation: algorithm (for data)

- given records \(u^1, \ldots, u^n \in S^d \) with empirical distribution \(q \)

 1. compute the mutual information matrix of the empirical distribution
 2. find a maximum spanning tree of the mutual information graph
 - tree structure represented as element of \(\{1, \ldots, d\}^d \)
 3. construct distribution \(\hat{p} = q_1 \prod_{i\neq 1} q_{i|\text{pa}_i} \) (\(\text{pa}_i \) is parent function for \(T \) rooted at vertex 1)
 - \(\hat{p}_1 \): prior distribution of \(u_1 \) represented as \(|S| \)-dimensional vector
 - \(\hat{p}_{i|\text{pa}_i} \) for \(i \neq 1 \): \(d - 1 \) conditional distributions represented as \(|S| \times |S| \)-dimensional matrices

- return distribution \(\hat{p} \) on \(S^d \)

 - the model is specified by \(O(d|S|^2) \) parameters
 - the runtime is \(O(nd^2 + d^2 \log d) \), for computing \(I(q) \) and then finding \(T \)
Example: Binary MNIST
Data set

- train set of 60,000 records, test set of 10,000 records; both constructed by thresholding MNIST
 - originally 28 by 28 gray scale images with pixel values in \(\{0, 1, 2, 3, \ldots, 255\}\)
 - construct binary images by taking pixels as 1 if original pixel is positive (i.e., not 0)
- so \(\mathcal{U} = \{0, 1\}^{784}\) and \(\mathcal{V} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}\)
- we can visualize as 28 by 28 binary images, some examples:

![Images of digit samples](image)

(a) \(v^1 = 5\) (b) \(v^2 = 0\) (c) \(v^3 = 4\) (d) \(v^4 = 1\) (e) \(v^5 = 9\)

Figure 4: First five images in data set
for each class, we construct a distribution p^v over \mathcal{U} using the train set, for $v = 0, \ldots, 9$

- we split into ten subsets based on a record’s class
- we approximate the empirical distribution of each class
- we obtain ten distributions on $\{0, 1\}^{784}$

we define a classifier $G : \mathcal{U} \rightarrow \mathcal{V}$ so that $G(u) \in \arg\max_v p^v(u)$

- we classify points according to the class with the maximum likelihood
Distribution sample averages

- we can roughly visualize the distributions by drawing 5000 samples and averaging
we want a quantitative way to judge our classifier G

the confusion matrix $C \in \mathbb{R}^{m \times m}$ of G on u^1, \ldots, u^n summarizes performance

- C_{ij} is the number of records for which $G(u^k) = i$ and $v^k = j$
- in other words, the number of records we classified as i and the actual class was j

the accuracy of G on u^1, \ldots, u^n is the proportion of records correctly classified

- can be expressed as $\frac{1}{n} \sum_{i=1}^{m} C_{ii}$

the error of G on u^1, \ldots, u^n is the proportion of records misclassified

we want high accuracy and low error on a test set not used to construct G
we train with 60,000 data pairs

here is the train set confusion matrix

\[
C_{\text{train}} = \begin{bmatrix}
5742 & 1 & 27 & 30 & 4 & 20 & 31 & 7 & 12 & 22 \\
3 & 6586 & 37 & 22 & 18 & 14 & 22 & 24 & 100 & 12 \\
33 & 80 & 5617 & 133 & 16 & 10 & 10 & 53 & 87 & 6 \\
9 & 6 & 54 & 5579 & 0 & 105 & 2 & 18 & 212 & 55 \\
9 & 25 & 51 & 4 & 5538 & 2 & 7 & 74 & 45 & 94 \\
26 & 4 & 6 & 116 & 7 & 5102 & 98 & 17 & 153 & 43 \\
40 & 6 & 16 & 2 & 22 & 32 & 5692 & 1 & 18 & 1 \\
0 & 5 & 33 & 37 & 18 & 4 & 0 & 5606 & 10 & 169 \\
60 & 18 & 107 & 163 & 24 & 110 & 56 & 44 & 5117 & 81 \\
1 & 11 & 10 & 45 & 195 & 22 & 0 & 421 & 97 & 5466 \\
\end{bmatrix}
\]

entry \(i_j\) is the number of records for which we predicted class \(i\) and the actual class was \(j\)
Test confusion matrix

- We test with 10,000 data pairs.

- Here is the test set confusion matrix:

\[
C^{\text{test}} = \begin{bmatrix}
953 & 0 & 15 & 10 & 3 & 3 & 14 & 2 & 6 & 6 \\
0 & 1099 & 5 & 0 & 0 & 2 & 4 & 8 & 3 & 6 \\
1 & 13 & 952 & 14 & 1 & 1 & 0 & 20 & 15 & 7 \\
1 & 0 & 16 & 917 & 2 & 27 & 1 & 5 & 38 & 4 \\
2 & 4 & 9 & 0 & 940 & 0 & 3 & 9 & 5 & 19 \\
8 & 0 & 0 & 31 & 0 & 830 & 12 & 2 & 25 & 10 \\
7 & 7 & 4 & 0 & 5 & 8 & 915 & 0 & 4 & 0 \\
3 & 0 & 7 & 6 & 5 & 1 & 0 & 897 & 10 & 24 \\
4 & 12 & 23 & 22 & 3 & 15 & 9 & 12 & 849 & 11 \\
1 & 0 & 1 & 10 & 23 & 5 & 0 & 73 & 19 & 922
\end{bmatrix}
\]

- Again, entry \(i,j \) is the number of records for which we predicted class \(i \) and the actual class was \(j \).

- We confuse sevens for nines and eights for threes (highlighted in red).
Summary of numerical experiments

- train error (60,000 pairs): 6.59%; test error (10,000 pairs): 7.26%;
 - indicated accuracy is $\approx 93\%$
 - state of the art (neural networks) is $\approx 99\%$
- julia code runs in about 5 minutes to construct distributions
 - nearly all of that time is spent finding second order distributions (counting co-occurrences)
- model specified by 15,680 parameters; compare with $2^{784} - 1$
 - 784 integers for structure of each tree (specifying parent of each node)
 - 784 floating point numbers for log conditional probabilities in each tree
- inference time is trivial
Extensions

- can define relative entropy for two measures
 - if P and Q are probability measures and $P \ll Q$, define the relative entropy
 \[d_{KL}(P, Q) = \int \log \left(\frac{dP}{dQ} \right) dP \]
 - will give probability mass function and probability density function cases
 - less aesthetic patches for cases when $P \not\ll Q$
- can derive Chow-Liu for Gaussian density estimation
 - corresponds to sparsity in the precision matrix