Dorfman-Rosenblatt Testing

Nick Landolfi and Sanjay Lall Stanford University

Motivation

- ▶ in 2021: asymptomatic mass testing for COVID
 - have a large population of people
 - want to determine the individuals with COVID
 - > polymerase chain reaction (PCR) tests are expensive and take time
- ▶ in the 1940s: US Public Health Service and Selective Service screens recruits for syphilis
 - have a sensitive antigen-based blood test
 - want to determine individuals with syphilis
 - ▶ reference: The Detection of Defective Members of Large Populations, Dorfman 1943
 - > anecdotally, Robert Dorfman discussed with David Rosenblatt

Basic idea

- ▶ the usual procedure: test all n people
 - requires n tests
 - call this *individual testing* or *non-grouped testing* (in contrast with below)
- ▶ a better idea: split each blood sample in half, pool blood from 5 individuals into single test
 - ▶ if a pool is negative, then declare all individuals in the pool negative
 - ▶ if a pool is positive, then separately re-test each individual in the pool (using other 1/2 of blood)
 - call this procedure group testing or pooled testing
 - when does it help? how does choice of group size matter?

Model

- ▶ have a background probability space (Ω, A, P)
 - \blacktriangleright with n i.i.d. Bernoulli random variables $x_i:\Omega
 ightarrow \{0,1\}$
 - ▶ call $p = P[x_i = 1]$ the *prevalence rate*
- ▶ we want, for an $\omega \in \Omega$, to determine the non-zero elements of

$$x(\omega)=(x_1(\omega),\ldots,x_n(\omega))\in\{0,1\}^n$$

- > we want to minimize the expected number of tests required
 - ▶ i.e., we care about average case over **P**
 - called the *probabilistic* setting

Analysis

- ▶ if we have *n* individuals and a *pool size* of *m*
- ▶ then we have $\lceil n/m \rceil$ pooled tests, since n/m need not be an integer
 - gives $\lfloor n/m \rfloor$ full pools of size m and (possibly) 1 partial pool of size mod(n, m)
- ▶ for a pool of size k, all individuals are negative with probability $(1-p)^k$
 - \blacktriangleright so the pool is positive with probability $1-(1-p)^k$
 - we retest all individuals in a pool if it is positive
- the expected total number of tests is (if, in case mod(n, m) = 1, we still retest)

$$T(n,m,p) = \underbrace{\left\lceil n/m \right\rceil}_{\# \text{ pools}} + \underbrace{\left\lfloor n/m \right\rfloor m (1 - (1-p)^m)}_{\text{full pools retesting}} + \underbrace{\operatorname{mod}(n,m) (1 - (1-p)^{\operatorname{mod}(n,m)})}_{\text{partial pool retesting}}$$

- \blacktriangleright compare with no pooling: expected number of tests is (constant) n
- obtain cost per individual by dividing by n

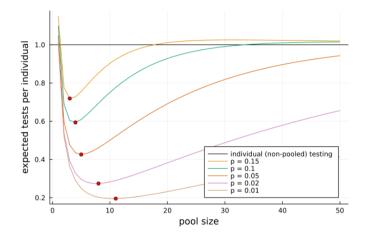
- define *idealized expected tests per individual* by dividing by n and taking $n \to \infty$
- \blacktriangleright we have that $\lim_{n
 ightarrow\infty} {}^1/{}_nT(n,m,p)$ is ${}^1/{}_m+1-(1-p)^m$
 - ▶ denote by $T_{\infty}(m,p)$
 - ▶ use $\lim_{n\to\infty} \frac{1}{n} \lfloor n/m \rfloor = \lim_{n\to\infty} \frac{1}{n} \lfloor n/m \rfloor = \frac{1}{m}$ and $\lim_{n\to\infty} \frac{1}{n} \mod(n,m) = 0$
 - \blacktriangleright theory says: fix p, and then optimize m to minimize this expression
 - removes dependence on n, keeps dependence on p
- two interpretations:
 - ▶ can interpret as the *average number of tests per individual* as *n* tends large
 - ▶ can interpret as the *relative cost compared with non-grouped testing* as *n* tends large

Computing optimal pool size, given prevalence

- **>** given p and n, can find $m \in Z$, 0 < m < n to minimize cost per individual T(n, m, p)
- ▶ or, can fix p and find $m \in Z$, m > 0 to minimize idealized cost for individual $T_{\infty}(m, p)$

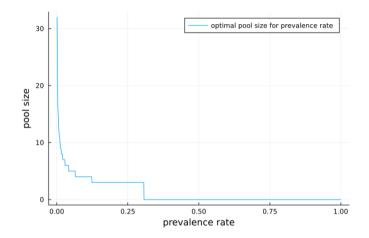
▶ or, can relax to $m \in \mathbf{R}$, m > 0 and optimize one-dimensional function $1/m + 1 - (1-p)^m$

Expected tests vs. pool size for various p



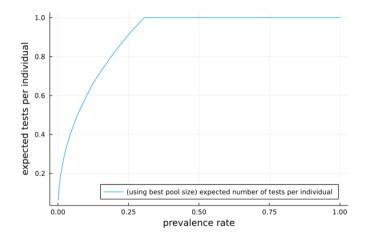
- ▶ want to beat 1 test per individual; red dots indicate optima at different prevalence levels
- ▶ if we have a small prevalence, larger pools lead to more savings (up to a point)

Optimal pool size vs. prevalence



- \blacktriangleright as prevalence p increases, best pool size decreases; small p indicates large pools
- ▶ however, prevalence can be so large that pooling is suboptimal

Indicated expected cost per individual vs. prevalence



▶ suppose you use best pool size for each prevalence rate, here is the expected number of tests

Parallel pooling

- ▶ *double-pooling* idea: pick pool size *m* and split into random pools twice
 - ▶ *re-test* an individual if and only *if both* of their pools are *positive*; the expected cost

 $\underbrace{2[n/m]}_{\text{\# pools}} + \mathsf{E}(\text{number of individuals in two positive groups})$

• expectation is n times E(individual is in 2 positive groups), denote 1 - p by q and deduce

▶ in both full groups:
$$\left(\frac{\lfloor n/m \rfloor m}{n}\right)^2 \left(p+q(1-q^{m-1})^2\right) o p+q(1-q^{m-1})^2$$
 as $n \to \infty$

▶ in one full and one partial: $2 \frac{\operatorname{mod}(n,m)m\lfloor n/m \rfloor}{n^2} \left(p + q(1-q^{m-1})(1-p)^{\operatorname{mod}(n,m)-1} \right) \to 0$ as $n \to \infty$.

▶ in both partial groups:
$$\left(\frac{{\sf mod}(n,m)}{n}\right)^2 \left(p+1-q^{{\sf mod}(n,m)-1}\right)^2 o 0$$
 as $n o \infty$

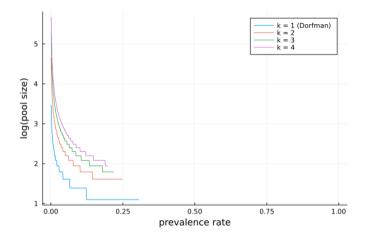
 \blacktriangleright can use these formulae to find expected cost; or can idealize as $n o \infty$ (as before) and obtain

$$2/m + p + (1-p)(1-(1-p)^{m-1})^2$$

▶ this method is proposed in A Note on Double Pooling Tests, Broder & Kumar 2020

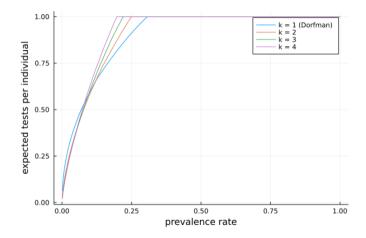
• generalizes to k-parallel pooling: one obtains idealize relative cost $k/m + p + (1-p)(1-(1-p)^{m-1})^k$

Parallel testing: log optimal pool size vs. prevalence



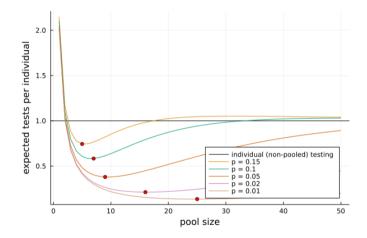
- pools get larger as parallelism increases
- prevalence rate at which you stop pooling decreases with parallelism

Parallel testing: indicated expected cost vs prevalence



> notice that double pooling (and others) beat single (Dorfman) pooling at low prevalence

Double pooling: expected tests vs. pool size for various p



▶ compare with earlier plot for Dorfman pooling; pool sizes are larger here