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Abstract—Many human-robot interaction tasks require in-
ferring human goals. Shared autonomy relies on the robot
inferring what the person wants in order to help them achieve it.
Autonomous driving relies on the robot inferring what the person
wants in order to effectively share the road with them. Goal
inference is typically passive: the robot looks to human actions for
observations about what they want, updating its estimate at every
step, and planning its actions using the current estimate. In this
paper we explore the pros and cons of active inference, where the
robot leverages its actions to trigger informative responses from
the human and converge to the correct estimate more quickly.

I. INTRODUCTION

Human goal inference is a crucial part of human-robot
interaction. Imagine operating a robot arm via a joystick to
pick up an object – if the robot can infer what you want to do,
it can take actions that help you achieve it [1, 3, 7, 8, 10, 12].
Or imagine driving next to an autonomous car – if the
autonomous car knows you want to merge, it can better prepare
to accommodate that.

Work related to human goal inference falls under two broad
categories. Prior work in shared autonomy has explored how
the robot can recover a probability distribution over human
operator goals by treating their inputs as observations about
what they want to achieve [6, 7, 10]. The robot then plans
its actions using the most probable goal [3], or in expectation
over the possible goals [7, 10].

This inference is passive: the robot always plans with the
information it currently has, assuming it will not get more
information in the future. But in reality, the person will
continue to provide control input, and thus information. This
input that they will provide in the future will depend on what
the robot does now, because the robot changes the state of
the world, e.g., moving further away from the correct goal
when its current estimate is wrong, triggering input in the
correct direction. Because of the dependency on the robot’s
actions, this future human input is an opportunity for the
robot, because the robot can take actions that will result in
informative, disambiguating observations. This is called active
goal inference, and has only recently been explored in shared
autonomy by considering the operation modes that the robot
is in [5], or implicitly, by computing the exact solution to a
POMDP by discretizing the state space [9].

Active inference has been explicitly explored, however, in
the driving domain [11]. But there, it has been restricted to
inferring the human’s driving style in order to better anticipate
what they will do, assuming their goal is known. Actively
inferring goals is yet to be explored in driving as well.

This paper provides an analysis of inference that is both
active and over the space of goals, in both the shared autonomy
and the autonomous driving domains.

We simulate different types of human input, and explore its
effects on the overall system performance. One of our most
interesting findings is in shared autonomy. There, under the
standard observation model of human actions as Boltzmann-
rational [2] – i.e., human takes approximately optimal actions
given the correct goal – passive inference leads to actions that
are already good with respect to information gain. However,
this performance degrades under a different observation model.
We explore a model in which humans actually react to the
robot’s actions, as opposed to solely providing an approxi-
mately optimal input regardless of what the robot does. We
model people as providing input only when the robot is highly
suboptimal, intervening to correct the robot (a model supported
by findings in [4]). With this new model, we find that actively
gathering information outperforms passive inference.

Overall, we find that active goal inference can sometimes be
useful, but its utility depends on how people actually behave,
how we model them, and what prior we start off with.

II. ACTIVE GOAL INFERENCE

We consider problems in which a robot R can take actions
uR that affect the state of the world via some dynamics model
x′ = f(x, uR). The robot wants to optimize a reward function

rR(x, uR; θH) (1)

that can depend on a desired human’s goal θH. In shared
autonomy, the reward will incentivize the robot to reach the
desired goal. In driving, the reward will incentivize the robot to
reach its own destination and avoid collisions with the human-
driven car.

The robot does not observe θH directly, but gets observa-
tions about it in the form of human actions uH (control input
by the operator in shared autonomy, controls to the human-
driven car in driving). The robot knows an observation model

P (uH|x, ûR, θH) (2)

with ûR the human’s estimate of what the robot’s action will
be (which is uR if the human gets to first observe uR and
then react). We assume that the robot also has a model of ûR.

This is a POMDP over x and θH as states. Solving it would
result in a policy that effectively trades off between exploiting
the current information and taking actions that gather more,
depending on how useful that new information would be. We
are particularly interested in systems where it is not tractable
to compute the exact solution to the POMDP, e.g. when we
are dealing with continuous domains for x and uR.

A natural solution is to separate estimation and control. This
leads to passive estimation. At every step, the robot has a



current belief b(θH) for what θH is. It takes the action that is
optimal in expectation over its current estimate b(θH):

argmax
uR

Eb(θH)Q(x, uR; θH) (3)

This is only optimal if the robot will no longer receive any
more observations. But in fact, after executing a control, the
robot receives an observation uH and updates its belief over
θH:

b′(θH) ∝ b(θH)P (uH|x, ûR, θH) (4)

It repeats these two steps at every time step.
In contrast, we explore active estimation, which leverages

the robot’s action to gain information. Active estimation takes
the action that optimizes a trade-off between exploiting and
exploring:

argmax
uR

Eb(θH) [Q(x, uR; θH) + λ(H(b)−H(b′))] (5)

with H(b) denoting the Shannon entropy of the distribution.
In what follows, we specialize these to shared autonomy

and driving, analyzing whether active estimation is useful in
these domains.

III. SHARED AUTONOMY
WITH BOLTZMANN-RATIONAL OPERATORS

A. Shared Autonomy Formulation
In shared autonomy, the human operates the robot to reach

the goal θH. The human actions uH are control inputs to the
robot, which the robot can treat as observations about what the
human wants [7]. The reward function incentivizes the robot
to reach the human’s desired goal as efficiently as possible.

A simple example of a reward, which we explore in our
experiments, is to penalize the robot for actions it is taking
every time it is not at the goal:

rR(x, uR; θH) = −min(‖umax‖, d(f(x, uR), θH)) (6)

where umax is the robot control of maximum norm, and
d(x, y) is the Euclidean distance between x and y. The robot
pays ‖umax‖ every time step is spends too far from the goal.
When it’s closer than two maximum actions away, it pays for
the distance between the state it will end up in and the goal.
This assumes f(x, uR) = x+ uR, i.e. uR is a velocity.

This reward function has a very simple value function:

V (x; θH) = d(x, θH) (7)

The robot takes the maximum action towards the goal until it
gets close enough, and then the action that takes it exactly to
the goal, traveling the straight line to the goal in as few steps
as possible.

If the robot knew θH, decision making would be trivial:

argmax
uR

Q(x, uR; θH) =

{
‖umax‖ θH−x

‖θH−x‖
if d(x, θH) < ‖umax‖

θH − x otherwise
(8)

Direct teleoperation addresses not knowing θH by directly
following the human control input uH, which works well if
the person provides near-optimal input:

udirectR = uH (9)

(a) Passive Inference (b) Active Inference

(c) Beliefs in true goal

Fig. 1. Boltzmann observation model, perfect human input. A comparison
of passive (a) and active (b) estimation with a Boltzmann-rational observation
model. The beliefs (c) are very similar. Passive inference does a good job of
accidentally gathering information. Active inference pulls the human toward
the center of the two goals to provoke more informative actions.

Shared autonomy is useful when the human control input is
noisy. In that case, rather than directly executing it, the robot
aggregates it over time to figure out what the person actually
wants. It uses an observation model to estimate θH. A classic
model of human action from cognitive science [2] that has
been used in shared autonomy as well [7] is that the person
is Boltzmann-rational in their actions:

P (uH | x, ûR, θH) = P (uH | x, θH) ∝ eβQ(x,uR=uH;θH)

(10)
This model assumes that:
• the person’s input only depends on the current state and

not on what they think the robot will do
• the person assumes that the robot will execute their

control input directly
β is a temperature parameter controlling how close to optimal
the human is. β = 0 assumes human control input is random,
and β →∞ assumes a perfectly rational human.

B. Analysis

We explored active estimation in a simple simulator. The
robot was a 2D point, and we had 2 possible goals as in [7].
We used the Boltzmann-rational observation model introduced
above, and simulated human input that is optimal, as well as
noisy human input to analyze its effects on the results.

In the following experiments, the human is always trying
to reach the top of two goals, indicated in green. The robot
starts in the configuration indicated in blue, and its trajectory
is traced out by gray (passive) or orange (active) points. The
human’s input is shown as black arrows. We terminate the
experiment once the robot is within ‖umax‖ of the goal.

a) Passive vs. Active Estimation: We begin by comparing
passive and active inference in this simple setup in Fig.1. In
both cases, the robot assumes a reasonably optimal human
(β = 2.0). In the active case, we set λ in (5) to 50.0, which
results in a visibly different trajectory than the passive case
(λ = 0). The simulated human provides the optimal input at
each step.



(a) 𝜆 = 1 (b) 𝜆 = 10 (c) 𝜆 = 100

Fig. 2. Boltzmann observation model, different λ. As λ increases, the
robot cares more and more about information gain, and less about achieving
the goal as quickly as possible. It pulls the human in between the two goals,
where there is the most opportunity for distinguishing actions.

(a) Passive Inference (b) Active Inference

(c) Beliefs in true goal

Fig. 3. Active is useful when the prior is incorrect. We examine starting
with an incorrect prior, 0.1 on the true goal, 0.9 on the incorrect goal, and
perform inference according to the Boltzmann-rational observation model.
Active is less sensitive to the incorrect prior, and recovers from it faster than
passive.

Active information gathering pulling the human towards the
center of the two goals, at which point an optimal human’s
input would be most differentiated between the two goals. But
passive estimation has a similar effect anyway. Planning in
expectation solely over the Q-value is effective at accidentally
gathering information – when the robot plans in expectation
over what the goal might be, it selects a direction that works as
best as possible in either case. This leads to states from which
the human input is more dissimilar depending on the goal,
which helps estimation as well. The belief (Fig.1.c) shows that
the belief is not really impacted by not doing active estimation
explicitly. Further, active estimation here results in a longer
path.

Fig.2 shows the effect of different trade-off scalars λ on the
resulting behavior, where information gathering changes the
resulting path more and more towards the center between the
two goals.

b) Starting with a Wrong Prior: Fig.1.c, shows that
the majority of the belief is on the correct goal for the
entire trajectory. This might help explain the effectiveness of
passive inference. Even at the first planning step, passive has
a correctly biased belief (toward the top goal), because it has
already observed the first human action, which breaks the 50-
50 symmetry between goals. In Fig.3 we ask: “what happens
with an incorrect prior?”

Here, passive over-commits to the wrong goal, before ac-

(a) Passive trajectory, active trajectory and beliefs for ! = 0.5

(b) Passive trajectory, active trajectory and beliefs for ! = 10.0

Fig. 4. Assuming different levels of human noise. We vary the temperature,
β, of the Boltzmann-rational observation model, giving the robot a model of
a more (a) and less (b) noisy human. The actual human input, shown as
black arrows, is optimal. In the case that there is very little information to
be gained, passive and active are similar. When each observation provides
more information, both algorithms benefit from beliefs that collapse faster.
Although beliefs are similar in (b), passive beats active for similar reasons as
Fig.1

cumulating enough evidence to the contrary. How long that
lasts will depend on the observation model: the more noisy
we allow the human to be, the longer it will take. In contrast,
active seeks out information and estimates the correct goal
more quickly. This then also results in achieving the task more
quickly, suggesting active has better worst-case performance.

c) Varying Human Rationality (Model): When varying
the prior, we notice that it takes some time, perhaps too
much time, for the beliefs to collapse. Intuition suggests
that after several repeated, consistent jerks upward on the
joystick, the robot should have high confidence in the top
goal. This suggests that we should explore effects of modifying
the temperature of the Boltzmann observation model, perhaps
increasing β (model of a more optimal human).

In Fig.4 we explore decreasing and increasing the tempera-
ture constant, modeling a more noisy and more rational human
than in Fig.1, respectively. The beliefs between passive and
active remain similar, but reflect less confidence in the case
of a lower β (Fig.4.a) and more confidence in the case of a
higher β (Fig.4.b). In the case that the robot receives more
informative observations, the beliefs collapse faster and active
information gathering is able to more quickly commit to the
goal, shortening trajectory length and task completion time.
Still, passive outperforms active with respect to these two
metrics in both cases.

d) Varying Human Rationality (Actual): Modeling the
human as nearly-optimal is reasonable, because the simulated
human is actually optimal. This causes passive’s success in
Fig.4.b, and allows active to successfully plan to gather infor-
mation in all the examples so far. But what if we simulated
noisier human input, and there was a mismatch between the
human’s actual noisiness and the model’s assumed noisiness?

In Fig.5, we simulate an actually noisy human. The mis-
match between the robot’s model (we keep β = 2, the same as
earlier in Fig.1) causes instability in the trajectories generated
while performing active inference. This variance is a result of



(a) Passive Inference (b) Active Inference

(c) Beliefs in true goal

Fig. 5. Actual human noise. We simulate a human that is actually
approximately optimal, by sampling the human control from a Gaussian with
variance 0.01, centered at the optimal control. For reference, ‖umax‖ = 0.1.
We plot the results of 30 replications. The bars in (c) indicate the standard
error of the plotted (mean) belief. Passive’s trajectory is stable in the face of
this noise, whereas active’s varies greatly.

active’s dependence on the observation model in planning. We
need an accurate model of the human in order to adequately
plan, especially when trying to actively gather information.
Passive inference is less affected by the truly noisy human
inputs, and by the mismatch between assumed and actual
rationality of the human.

Overall, shared autonomy with a Boltzmann observation
model works well so long as it does not start off with a wrong
prior. Actively gathering information is rarely necessary in
such a system, and usually decreases the robot’s reward in
the task.

IV. SHARED AUTONOMY WITH OPERATORS THAT React TO
THE ROBOT’S ACTIONS

A. A Corrective Observation Model

So far we have used a Boltzmann-rational observation
model of the human’s actions. Although common, this model
implicitly assumes that the operator is unaffected by the
robot’s actions – they are simply providing the optimal input
regardless of where the robot is, assuming the robot will follow
that input exactly, despite the fact that it hasn’t been doing this
so far.

Of course, in reality people notice the robot is not following
their input, and thus do not expect it to all of the sudden start
doing that at the next time step [4]. They provide different
inputs depending on what the robot does.

If the robot is moving toward the correct goal, people
sometimes let off the control, providing no input, assuming
the robot knows what it’s doing. If instead the robot is moving
toward an incorrect goal, the human pulls back and toward the
correct goal, as if to counteract the robot’s action and indicate
the correct action.

To account for this behavior, we formulate a new ob-
servation model with two regimes: (1) when the human is
applying no input because the robot’s action looks almost

(a) Passive Inference (b) Active Inference

(c) Beliefs in true goal

Fig. 6. Corrective observation model. A comparison of passive (a) and
active (b) estimation with a corrective observation model. The beliefs (c)
diverge between the two inference algorithms for several time steps. Active
inference commits to a goal early, testing the human for feedback, whereas
passive hedges. We set a modest operator threshold, which is why passive
can collapse the belief at time step 4, when it is not corrected for taking an
action that is out of the threshold for optimality with respect to the bottom
goal.

optimal according to θH, and (2) when the human is applying
a correction because the robot’s action was suboptimal:

P (uH | x, ûR, θH) =

{
Pwatch if Q(x, ûR, θH) ≥ Qmax − δ
Pfix otherwise

(11)
where Qmax = maxuR Q(x, uR, θH) and δ is some threshold
for deciding how close to optimal the robot’s predicted action
is. We assume people predict the robot’s action to be the same
as its previous actions, i.e. ûRt = ut−1R .
Pwatch and Pfix define the observation model in the two

regimes.

Pwatch(uH | x, ûR, θH) =

{
1− ε if uH = 0

ε otherwise
(12)

where ε is selected to be small, but 6= 0 so that we do not
annihilate a belief. We model the human as almost certainly
applying no input if the last robot control was approximately
optimal.

In the case that the robot’s last action was suboptimal
according to δ and θH, we model them as both counteracting
the last robot’s control and applying the optimal control
otherwise (noisily).

Pfix(uH | x, ûR, θH) ∝ N (−ûR + ut,∗H , σ
2)

In one regime, when the robot is issuing correct controls, the
human is “content” and only “watching.” In the other regime,
they are “attentive” and “fixing” the robot’s action.

B. Analysis

As earlier, we simulate a point robot in a 2D plane, with
two goals. The correct goal remains the top one.



(a) Passive, active trajectory and beliefs for !" # = (0.1, 0.9)

(b) Passive, active trajectory and beliefs for  !" # = (0.2, 0.8)

(c) Passive, active trajectory and beliefs for  !" # = (0.3, 0.7)

Fig. 7. Corrective observation model with wrong prior. A comparison
between varying degrees of incorrectness in the prior under a corrective
observation model. Passive’s unwarranted confidence leads it to prompt
corrections at different points in its trajectory. A large incorrect prior in the
passive case mimics active’s strategy of committing to a goal early on. The
resulting information gain is a happy coincidence for passive inference in (a),
whereas active estimation explicitly plans for it in every case.

a) Passive vs Active Estimation: In Fig.6, we compare
the inference algorithms under the corrective observation
model. The ability of the robot to affect the human’s action
differentiates active and passive inference. Active commits to
the top goal, after its initial belief is biased by the human’s
first (and only) control. This is because when the human does
not correct, the belief distribution collapses.

Passive, because it does not plan to gather information,
does not realize that taking an action toward one of the goals
will completely collapse the belief, and therefore hedges for a
few time steps before happening into a state where its action
is suboptimal with respect to the bottom goal, receiving a
correction, and switching course.

Active information thus achieves the task optimally, despite
initial uncertainty.

b) Starting with a Wrong Prior: We also explore the
effect of varying the prior. Fig.7 demonstrates how passive’s
trajectory changes significantly with the degree of error in
initial beliefs, whereas active’s remains constant. The passive
robot’s confidence causes it to stumble, after some number of
time steps, into being suboptimal with respect to the true goal,
warranting a correction from the human. Counterintuitvely, the
more incorrect the prior, the earlier passive discerns its initial
mistake in beliefs, because the earlier it gets a correction.

Active’s trajectory is consistent across these priors, and in
our experiments, all incorrect priors. As before, it commits
to the goal holding a majority belief, to an extent that if this
goal were wrong, the human would supply a correction. In
each case of wrong priors it receives the correction, and the

(a) Passive trajectory, active trajectory and beliefs for low !

(b) Passive trajectory, active trajectory and beliefs for high !

Fig. 8. Human threshold for intervening. A comparison of a more strict
(a) and more liberal (b) operator threshold for optimality (δ in (12)). In the
case of a more corrective human (a), passive and active are identical. When
planning for a less strict human (b), active estimation goes out of its way
looking for a correction. Active is able to plan well, regardless of operator
threshold.

beliefs collapse in one step.
c) Varying Operator Threshold for Optimality: The op-

erator’s threshold for optimality clearly affects the trajectories
of Fig.6 and Fig.7. In Fig.8 we explore the result of both
decreasing and increasing the threshold. A lower threshold,
modeling a human more apt to correct the robot, helps passive
inference, and beliefs are indistinguishable between the two
algorithms.

For a less attentive, lazier human with a larger threshold,
passive suffers. Active acts as we saw earlier, except now
it exaggerates its preference toward one goal, deliberately
choosing an action which is suboptimal with respect to the
bottom goal. Again, when it receives no corrections from the
human, its beliefs collapse. A larger threshold does not prevent
active from collapsing the beliefs as fast as with the lower
thresholds we have seen so far. Active compensates for the
threshold.

Overall, when the person is providing corrective input to
the robot, active estimation leverages this and commits to a
goal, knowing that if it is wrong it will get a correction. This
leads to more efficient behavior.

V. AUTONOMOUS DRIVING

In the driving domain, the car interacts not with an operator,
but with a human-driven vehicle. The actions uH are no longer
just observations, they actually affect physical state.

Autonomous cars usually plan using Model Predictive Con-
trol (MPC), i.e. use a short time horizon and replan at every
step. Thus, we can treat uR as a sequence of controls of length
T , with T the MPC time horizon.

Similarly, uH is a sequence of human controls of length T .
The robot’s reward is to reach its own destination and avoid
collisions with the human. Critically, this means that rR is a
function of uH, because the robot needs to know the person’s
trajectory in order to evaluate whether it stayed far enough
away. As in [11], we model the human as optimizing their



1 2

(a) Merge Example (b) Simulation

Fig. 9. An example of a car desiring to merge (a) and our discretization of
the goal space: hold lane or merge. In our simulation (b), the human (white
car) desires to merge in front of the robot (red car), but the robot does not
know this.

own reward in response to uR:

uH(x, uR; θH) = argmax
u

rH(x, uR, u; θH) (13)

This takes us back to the robot’s reward only depending on
x, uR, and θH. Note that because actions are trajectories for
the time horizon, rH is actually cumulative reward over that
horizon.

We use a Boltzmann-rational observation model again,
looking at the reward that the human accumulates:

P (uH | x, uR, θH) ∝ eβrH(x,uR,uH;θH) (14)

Since the human has to keep driving, the corrective observation
model we explored in shared autonomy no longer applies.

Thus, uH serves two roles: it changes the physical state of
the world, and it provides observations about θH. The robot
uses a deterministic model to plan accounting for the former,
and a probabilistic model to estimate the latter.

A. Analysis

We consider a merge scenario, as it captures the disambigua-
tion task and exemplifies an everyday situation forcing drivers
to perform inference. The robot thinks the human has one of
two goals: merge or hold lane (see Fig.9). The trajectories and
beliefs for the case when the human wants to merge, and the
robot starts with a uniform prior, are shown in Fig.10.

The beliefs for the active and passive algorithms separate
considerably. In the passive case, the robot slowly begins to
uncover the humans intent from the human’s slight nudging.
It takes a good deal of time, however, for these beliefs to
converge. It certain contexts, such as allowing somebody to
merge for an exit, it could take too long. Active inference, on
the other hand, pushes the beliefs to collapse earlier. It gathers
information by planning to influence the human through its
model of the human’s response. Even more interesting is
the behavior which emerges out of the optimization, and its
surprising resemblance to typical human behavior.

Specifically, the robot takes actions which probe the human.
It brakes and slows, behavior communicating: “would you
like to merge?” In the example shown in Fig.10, the human
does wish to merge, and completes this goal successfully. If
the human responded by not moving into the lane, the robot
would interpret the slight nudging over as noise, and the belief
distribution would collapse the other direction.

slows and makes space to probe

starts merging

deadlock

(a)

(b)

Passive Estimation

Active Info Gathering

(c)

Fig. 10. The belief distributions (a) and corresponding behavior (b, c) for the
merge scenario where the human (white car) does wish to merge. In the first
case (b) the robot is performing passive inference. In the second case (c) the
robot is performing active inference.

VI. DISCUSSION

This paper summarized our exploration into the effects
of actively estimating human goals in shared autonomy and
driving. We found that active estimation can be especially
useful when we start with the wrong prior over the human
goals, or in shared autonomy when the operator only provides
corrections if the robot is too suboptimal. In such cases, active
estimation means that the robot can put the operator in a
situation where they either correct the robot, which is highly
informative, or the robot is already doing the correct task.

Our work is really a step in this analysis, since our ex-
periments were for particular and rather simple scenarios. We
also opted for simulated models of people in order to tease
out effects such as the amount of user noise in deciding user
controls, but in future work we must test active estimation
with real users.

Overall, we believe that robots should not always passively
update their beliefs about human goals, but they should
sometimes leverage their actions to probe for more informa-
tion. Much work remains to understand when and to what
extent this should happen, e.g., an autonomous car should
not always slow down when someone passes. Active probing
should ideally be based on other criteria, such as the value of
information, rather than optimizing for information gain for
the sake of it.
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